. ‑ Pour répondre à la saisine du Bureau de l'Assemblée nationale, nous avons réalisé un panorama rapide des technologies nucléaires du futur.
Celles-ci s'appuient sur deux grands principes : la fission nucléaire, qui consiste à casser des atomes lourds en atomes plus petits, et la fusion nucléaire, qui consiste au contraire à rassembler plusieurs atomes légers pour former un atome plus lourd.
La fission nous intéresse en priorité, puisqu'il s'agit du mécanisme mis en œuvre dans les réacteurs nucléaires actuels, d'autant que la fusion, avec notamment le projet international ITER à Cadarache, ne pourra probablement pas se concrétiser avant la fin du siècle. Il n'en demeure pas moins que l'objectif de maîtrise de la fusion nucléaire doit être poursuivi, puisque celle-ci ne produit aucun déchet.
Pour la fission, une première catégorie de solutions porte sur les réacteurs dits « de quatrième génération », dont les développements sont coordonnés par le Forum international génération IV. Le projet de réacteur Astrid correspondait à l'un des six concepts développés dans ce cadre.
Ces différents concepts présentent plusieurs avantages par rapport aux réacteurs actuels, par exemple des températures de fonctionnement élevées qui les rendent mieux adaptés à des usages dérivés comme la fourniture de chaleur pour des applications industrielles ou la production d'hydrogène.
Néanmoins, ils présentent également des difficultés en termes de sûreté, comme l'a mis en évidence un rapport publié en 2015 par l'Institut de radioprotection et de sûreté nucléaire (IRSN). Cette question de sûreté constitue, à notre avis, l'obstacle principal au développement de ces technologies dans les pays occidentaux. Un réacteur innovant devrait proposer un saut en matière de sûreté pour compenser le manque de recul sur l'exploitation d'une nouvelle solution technique.
Les petits réacteurs modulaires, en anglais Small Modular Reactor ou SMR, sont la seconde grande catégorie de réacteurs du futur basés sur la fission. La plupart reprennent les principes de fonctionnement des réacteurs actuels, même si leur taille et leur puissance sont inférieures.
Ce concept de petits réacteurs inverse la tendance historique, constatée depuis le début de l'industrie nucléaire civile destinée à la production d'électricité, à savoir l'accroissement constant de la puissance des réacteurs, pour bénéficier d'un effet d'économie d'échelle. Ces SMR présentent cependant potentiellement plusieurs atouts importants.
Leur faible puissance ouvre la possibilité de réaliser un saut en matière de sûreté nucléaire, sous réserve que leur conception intègre correctement cet objectif. Leur modularité devrait permettre de standardiser les composants et de les fabriquer en série en usine, et donc de bénéficier d'un effet de série. Grâce à la construction en usine, leur réalisation sur site sera beaucoup plus simple que celle des réacteurs actuels, ce qui réduira les délais, d'un facteur de l'ordre de deux, et surtout les incertitudes, avec un impact très positif sur le financement. Leurs faibles taille et puissance les rendent plus adaptables à diverses situations : sites isolés, réseaux électriques peu développés, ressources en eau limitées, production de chaleur de proximité en cogénération pour l'industrie ou même le chauffage urbain, envisagé en Finlande, etc. Néanmoins, la multiplication des sites peut avoir un impact négatif sur la sécurité.
Un coût de production plus élevé pourrait être l'inconvénient majeur des SMR, puisqu'ils ne bénéficient pas d'un effet d'échelle comme les grands réacteurs. C'est d'ailleurs la position des industriels français. Mais ce coût de production plus élevé pourrait être compensé par l'effet de série et la simplification de la construction sur site, comme le montre, pour la partie relative au coût de construction, une étude récente basée sur les données du SMR américain le plus avancé, Nuscale.
L'industrie française : EDF, TechnicAtome, le CEA et Naval Group, développe un SMR appelé Nuward, avec l'objectif d'une commercialisation après 2030. D'une puissance de 340 mégawattheures (MWe) – deux fois 170 MWe –, il est conçu pour remplacer les centrales à charbon, à l'exportation. Nombre de projets étrangers concurrents existent, dont certains ont quelques années d'avance sur Nuward. Nous pensons donc que ce projet mériterait de voir son développement soutenu, avec l'objectif de l'accélérer.
La construction en série de ce réacteur français nécessitera une usine qui ne peut se justifier sans un volant de commandes initiales suffisant. Aussi, nous estimons qu'il sera nécessaire d'évaluer la possibilité de remplacer, après 2030, certains réacteurs de 900 MWe par des SMR, en mettant, le cas échéant, en balance les questions de coût, de sûreté et de développement industriel. Cette suggestion avait été formulée par le président de l'Autorité de sûreté nucléaire (ASN), M. Bernard Doroszczuk, lors de sa récente audition devant l'OPECST.
Le succès des SMR dépendra également de la possibilité d'homogénéiser leurs conditions de certification dans les différents pays, comme c'est le cas pour l'aéronautique. L'ASN a déjà engagé des échanges à ce sujet avec ses homologues européens. L'IRSN a également pris les devants, en se proposant d'étudier la sûreté des SMR. Nous apportons notre soutien à ces démarches et demandons que l'ASN et l'IRSN disposent des moyens nécessaires pour les mener à terme.
Enfin, plus de la moitié des projets de SMR recensés par l'Agence internationale de l'énergie atomique (AIEA) reprennent l'un des six concepts de réacteurs de génération IV évoqués précédemment, avec les mêmes avantages en termes de nouveaux usages, par exemple pour la production de chaleur. Ces réacteurs sont en général désignés sous l'acronyme AMR pour Advanced Modular Reactor ou « réacteur modulaire avancé ». Comme les SMR utilisant les technologies des réacteurs actuels, les AMR pourraient tirer bénéfice de leur faible puissance pour apporter un saut significatif en matière de sûreté. C'est pourquoi nous considérons qu'il s'agit d'une voie de recherche et développement importante.
Après cette description des différentes technologies en matière de réacteurs de fission avancés, Stéphane Piednoir va présenter le résultat de nos travaux pour ce qui concerne le projet Astrid. Auparavant, je le remercie pour le travail que nous avons réalisé ensemble, qui fut agréable et instructif.